2月15日,物理学院引力中心团队成员王顺教授带领的量子器件课题组以“An Ultrafast WSe2 Photodiode Based on a Lateral p‑i‑n Homojunction”为题在美国化学学会旗下纳米材料领域的顶级期刊《美国化学学会 纳米》(ACS Nano)上发表论文,物理学院副研究员张有为、硕士研究生马衎衎为本文共同第一作者。王顺教授与复旦大学仇志军教授为论文的通讯作者。
过渡金属硫族化合物 (TMDs) 由于其较强的光与物质相互作用、可见-近红外光谱范围内的可调带隙以及较高的载流子迁移率而在光电器件的研究中备受关注。在光电器件领域,基于p-n结的光电二极管具有响应速度快、光响应线性度高、噪声低和功耗低等优点。但受限于高质量p-n结和低接触电阻的制备,前人报道的TMDs基光电二极管性能尚有很大提升空间。
基于以上分析,王顺教授课题组报道的基于横向p-i-n同质结的多层WSe2光电二极管具有优异的光电性能。这种二极管表现出了理想的整流性能,电流开/关比高达1.2×106,理想因子为1.14。在光伏模式下工作时,该二极管在450 nm光照下表现出出色的光电探测性能,包括340 mV的开路电压,0.1 A W-1的响应度和2.2×1013 Jones的比探测率。此外,得益于横向p-i-n的器件结构,该二极管可以显著抑制甚至完全避免一些缓慢的光电响应过程,从而首次将TMDs基光电器件的响应速度提升至百纳秒量级 (264 ns),对应3 dB 带宽大于 1 MHz。基于上面提到的优异特性以及与CMOS兼容的工艺,这种WSe2 p-i-n结二极管有希望在自驱动高频弱信号光电检测中实现应用。
在器件制备中采用了两步光刻工艺,在沉积金属电极之前,采用O2和Ar等离子体分别引入p型和n型掺杂,同时在光刻胶的保护下,中间的WSe2沟道保持其本征特性,从而形成了完整的横向p-i-n同质结。等离子体处理后,再采用电子束蒸发沉积金属电极,最终去胶完成器件制备。
在对基于WSe2的二极管进行电学表征之前,首先对表面等离子体处理引起的掺杂进行了表征。由图2的转移特性曲线可以看出,p型和n型器件均表现出清晰的单极性输运特性,这表明等离子体处理引起的p型和n型掺杂是成功的,并且在Vds从-100 mV到100 mV范围内的输出特性曲线显示出近乎完美的线性,表明两种掺杂均形成了良好的欧姆接触。